PCTDSE: A parallel Cartesian-grid-based TDSE solver for modeling laser-atom interactions
نویسندگان
چکیده
We present a parallel Cartesian-grid-based time-dependent Schrödinger equation (TDSE) solver for modeling laser–atom interactions. It can simulate the single-electron dynamics of atoms in arbitrary time-dependent vector potentials.We use a split-operatormethod combinedwith fast Fourier transforms (FFT), on a three-dimensional (3D) Cartesian grid. Parallelization is realized using a 2D decomposition strategy based on the Message Passing Interface (MPI) library, which results in a good parallel scaling on modern supercomputers. We give simple applications for the hydrogen atom using the benchmark problems coming from the references and obtain repeatable results. The extensions to other laser–atom systems are straightforward with minimal modifications of the source code.
منابع مشابه
Strip Decomposition Parallelization of Fast Direct Poisson Solver on a 3D Cartesian Staggered Grid
A strip domain decomposition parallel algorithm for fast direct Poisson solver is presented on a 3D Cartesian staggered grid. The parallel algorithm follows the principles of sequential algorithm for fast direct Poisson solver. Both Dirichlet and Neumann boundary conditions are addressed. Several test cases are likewise addressed in order to shed light on accuracy and efficiency in the strip do...
متن کاملMixed Large-Eddy Simulation Model for Turbulent Flows across Tube Bundles Using Parallel Coupled Multiblock NS Solver
In this study, turbulent flow around a tube bundle in non-orthogonal grid is simulated using the Large Eddy Simulation (LES) technique and parallelization of fully coupled Navier – Stokes (NS) equations. To model the small eddies, the Smagorinsky and a mixed model was used. This model represents the effect of dissipation and the grid-scale and subgrid-scale interactions. The fully coupled NS eq...
متن کاملWall-Layer Modeling for Cartesian Grid Solver Using an Overset Boundary Layer Orthogonal Curvilinear Grid
Wall-layer modeling for a Cartesian grid solver is developed by coupling an orthogonal curvilinear grid solver using overset grid interpolation and coupled pressure Poisson solver. A thin wall-layer grid is considered sufficient to resolve the boundary layer. Initial validation is performed for laminar flows over a circular cylinder, where the wall-layer model shows up to 10% improvement in the...
متن کاملOn 3D modeling of seismic wave propagation via a structured parallel multifrontal direct Helmholtz solver
We consider the modeling of (polarized) seismic wave propagation on a rectangular domain via the discretization and solution of the inhomogeneous Helmholtz equation in 3D, by exploiting a parallel multifrontal sparse direct solver equipped with Hierarchically Semi-Separable (HSS) structure to reduce the computational complexity and storage. In particular, we are concerned with solving this equa...
متن کاملA Message-Passing Distributed Memory Parallel Algorithm for a Dual-Code Thin Layer, Parabolized Navier-Stokes Solver
In this study, the results of parallelization of a 3-D dual code (Thin Layer, Parabolized Navier-Stokes solver) for solving supersonic turbulent flow around body and wing-body combinations are presented. As a serial code, TLNS solver is very time consuming and takes a large part of memory due to the iterative and lengthy computations. Also for complicated geometries, an exceeding number of grid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer Physics Communications
دوره 210 شماره
صفحات -
تاریخ انتشار 2017